Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Trends Mol Med ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38523014

RESUMO

Small nucleolar RNAs (snoRNAs) are emerging as important regulators of cardiovascular (patho)biology. Several roles of snoRNAs have recently been identified in heart development and congenital heart diseases, as well as their dynamic regulation in hypertrophic and dilated cardiomyopathies, coronary heart disease (CHD), myocardial infarction (MI), cardiac fibrosis, and heart failure. Furthermore, reports of changes in vesicular snoRNA expression and altered levels of circulating snoRNAs in response to cardiac stress suggest that snoRNAs also function in cardiac signaling and intercellular communication. In this review, we summarize and discuss key findings and outline the clinical potential of snoRNAs considering current challenges and gaps in the field of cardiovascular diseases (CVDs).

2.
Cell Stem Cell ; 31(3): 292-311, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38366587

RESUMO

Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Diferenciação Celular
3.
Cell Rep ; 43(1): 113668, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198277

RESUMO

Perlecan (HSPG2), a heparan sulfate proteoglycan similar to agrin, is key for extracellular matrix (ECM) maturation and stabilization. Although crucial for cardiac development, its role remains elusive. We show that perlecan expression increases as cardiomyocytes mature in vivo and during human pluripotent stem cell differentiation to cardiomyocytes (hPSC-CMs). Perlecan-haploinsuffient hPSCs (HSPG2+/-) differentiate efficiently, but late-stage CMs have structural, contractile, metabolic, and ECM gene dysregulation. In keeping with this, late-stage HSPG2+/- hPSC-CMs have immature features, including reduced ⍺-actinin expression and increased glycolytic metabolism and proliferation. Moreover, perlecan-haploinsuffient engineered heart tissues have reduced tissue thickness and force generation. Conversely, hPSC-CMs grown on a perlecan-peptide substrate are enlarged and display increased nucleation, typical of hypertrophic growth. Together, perlecan appears to play the opposite role of agrin, promoting cellular maturation rather than hyperplasia and proliferation. Perlecan signaling is likely mediated via its binding to the dystroglycan complex. Targeting perlecan-dependent signaling may help reverse the phenotypic switch common to heart failure.


Assuntos
Agrina , Proteoglicanas de Heparan Sulfato , Humanos , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Agrina/metabolismo , Miócitos Cardíacos/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 326(3): H735-H751, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180449

RESUMO

Arrhythmic sudden cardiac death (SCD) is an important cause of mortality following myocardial infarction (MI). The rabbit has similar cardiac electrophysiology to humans and is therefore an important small animal model to study post-MI arrhythmias. The established approach of surgical coronary ligation results in thoracic adhesions that impede epicardial electrophysiological studies. Adhesions are absent following a percutaneously induced MI, which is also associated with reduced surgical morbidity and so represents a clear refinement of the approach. Percutaneous procedures have previously been described in large rabbits (3.5-5.5 kg). Here, we describe a novel method of percutaneous MI induction in smaller rabbits (2.5-3.5 kg) that are readily available commercially. New Zealand White rabbits (n = 51 males, 3.1 ± 0.3 kg) were anesthetized using isoflurane (1.5-3%) and underwent either a percutaneous MI procedure involving microcatheter tip deployment (≤1.5 Fr, 5 mm), coronary ligation surgery, or a sham procedure. Electrocardiography (ECG) recordings were used to confirm ST-segment elevation indicating coronary occlusion. Blood samples (1 and 24 h) were taken for cardiac troponin I (cTnI) levels. Ejection fraction (EF) was measured at 6-8 wk. Rabbits were then euthanized (Euthatal) and hearts were processed for magnetic resonance imaging and histology. Mortality rates were similar in both groups. Scar volume, cTnI, and EF were similar between both MI groups and significantly different from their respective sham controls. Thus, percutaneous coronary occlusion by microcatheter tip deployment is feasible in rabbits (2.5-3.5 kg) and produces an MI with similar characteristics to surgical ligation with lower procedural trauma and without epicardial adhesions.NEW & NOTEWORTHY Surgical coronary ligation is the standard technique to induce myocardial infarction (MI) in rabbits but is associated with procedural trauma and the generation of thoracic adhesions. Percutaneous coronary occlusion avoids these shortcomings and is established in pigs but has only been applicable to large rabbits because of a mismatch between the equipment used and target vessel size. Here, we describe a new scalable approach to percutaneous MI induction that is safe and effective in 2.5-3.5-kg rabbits.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Oclusão Coronária , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Masculino , Coelhos , Animais , Suínos , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/cirurgia , Vasos Coronários/patologia , Infarto do Miocárdio/patologia , Coração , Oclusão Coronária/complicações , Oclusão Coronária/diagnóstico por imagem , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Arritmias Cardíacas/complicações , Intervenção Coronária Percutânea/efeitos adversos
5.
Stem Cell Reports ; 18(11): 2123-2137, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37802072

RESUMO

Primary carnitine deficiency (PCD) is an autosomal recessive monogenic disorder caused by mutations in SLC22A5. This gene encodes for OCTN2, which transports the essential metabolite carnitine into the cell. PCD patients suffer from muscular weakness and dilated cardiomyopathy. Two OCTN2-defective human induced pluripotent stem cell lines were generated, carrying a full OCTN2 knockout and a homozygous OCTN2 (N32S) loss-of-function mutation. OCTN2-defective genotypes showed lower force development and resting length in engineered heart tissue format compared with isogenic control. Force was sensitive to fatty acid-based media and associated with lipid accumulation, mitochondrial alteration, higher glucose uptake, and metabolic remodeling, replicating findings in animal models. The concordant results of OCTN2 (N32S) and -knockout emphasizes the relevance of OCTN2 for these findings. Importantly, genome-wide analysis and pharmacological inhibitor experiments identified ferroptosis, an iron- and lipid-dependent cell death pathway associated with fibroblast activation as a novel PCD cardiomyopathy disease mechanism.


Assuntos
Cardiomiopatias , Ferroptose , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Proteínas de Transporte de Cátions Orgânicos/genética , Membro 5 da Família 22 de Carreadores de Soluto/genética , Cardiomiopatias/genética , Lipídeos
6.
Sci Rep ; 13(1): 12137, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495732

RESUMO

Activation of cardiac fibroblasts and differentiation to myofibroblasts underlies development of pathological cardiac fibrosis, leading to arrhythmias and heart failure. Myofibroblasts are characterised by increased α-smooth muscle actin (α-SMA) fibre expression, secretion of collagens and changes in proliferation. Transforming growth factor-beta (TGF-ß) and increased mechanical stress can initiate myofibroblast activation. Reversibility of the myofibroblast phenotype has been observed in murine cells but has not been explored in human cardiac fibroblasts. In this study, chronically activated adult primary human ventricular cardiac fibroblasts and human induced pluripotent stem cell derived cFbs (hiPSC-cFbs) were used to investigate the potential for reversal of the myofibroblast phenotype using either subculture on soft substrates or TGF-ß receptor inhibition. Culture on softer plates (25 or 2 kPa Young's modulus) did not alter proliferation or reduce expression of α-SMA and collagen 1. Similarly, culture of myofibroblasts in the presence of TGF-ß inhibitor did not reverse myofibroblasts back to a quiescent phenotype. Chronically activated hiPSC-cFbs also showed attenuated response to TGF-ß receptor inhibition and inability to reverse to quiescent fibroblast phenotype. Our data demonstrate substantial loss of TGF-ß signalling plasticity as well as a loss of feedback from the surrounding mechanical environment in chronically activated human myofibroblasts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miofibroblastos , Adulto , Humanos , Camundongos , Animais , Miofibroblastos/metabolismo , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Actinas/metabolismo , Fator de Crescimento Transformador beta1/genética
7.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220173, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37122212

RESUMO

Human induced pluripotent stem cells (hiPSC) offer an unprecedented opportunity to generate model systems that facilitate a mechanistic understanding of human disease. Current differentiation protocols are capable of generating cardiac myocytes (hiPSC-CM) and sympathetic neurons (hiPSC-SN). However, the ability of hiPSC-derived neurocardiac co-culture systems to replicate the human phenotype in disease modelling is still in its infancy. Here, we adapted current methods for efficient and replicable induction of hiPSC-CM and hiPSC-SN. Expression of cell-type-specific proteins were confirmed by flow cytometry and immunofluorescence staining. The utility of healthy hiPSC-CM was tested with pressor agents to develop a model of cardiac hypertrophy. Treatment with angiotensin II (AngII) resulted in: (i) cell and nuclear enlargement, (ii) enhanced fetal gene expression, and (iii) FRET-activated cAMP responses to adrenergic stimulation. AngII or KCl increased intracellular calcium transients in hiPSC-SN. Immunostaining in neurocardiac co-cultures demonstrated anatomical innervation to myocytes, where myocyte cytosolic cAMP responses were enhanced by forskolin compared with monocultures. In conclusion, human iPSC-derived cardiac myocytes and sympathetic neurons replicated many features of the anatomy and (patho)physiology of these cells, where co-culture preparations behaved in a manner that mimicked key physiological responses seen in other mammalian systems. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Diferenciação Celular , Fenótipo , Neurônios , Mamíferos
8.
F1000Res ; 12: 1224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298530

RESUMO

Animal models have proven integral to broadening our understanding of complex cardiac diseases but have been hampered by significant species-dependent differences in cellular physiology. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have shown great promise in the modelling of cardiac diseases despite limitations in functional and structural maturity. 3D stem cell-derived cardiac models represent a step towards mimicking the intricate microenvironment present in the heart as an in vitro model. Incorporation of non-myocyte cell types, such as cardiac fibroblasts, into engineered heart tissue models (EHTs) can help better recapitulate the cell-to-cell and cell-to-matrix interactions present in the human myocardium. Integration of human-induced pluripotent stem cell-derived cardiac fibroblasts (hiPSC-CFs) and hiPSC-CM into EHT models enables the generation of a genetically homogeneous modelling system capable of exploring the abstruse structural and electrophysiological interplay present in cardiac pathophysiology. Furthermore, the construction of more physiologically relevant 3D cardiac models offers great potential in the replacement of animals in heart disease research. Here we describe efficient and reproducible protocols for the differentiation of hiPSC-CMs and hiPSC-CFs and their subsequent assimilation into EHTs. The resultant EHT consists of longitudinally arranged iPSC-CMs, incorporated alongside hiPSC-CFs. EHTs with both hiPSC-CMs and hiPSC-CFs exhibit slower beating frequencies and enhanced contractile force compared to those composed of hiPSC-CMs alone. The modified protocol may help better characterise the interplay between different cell types in the myocardium and their contribution to structural remodelling and cardiac fibrosis.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Miócitos Cardíacos , Miocárdio/metabolismo , Engenharia Tecidual/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-36231764

RESUMO

The aim of the study was to explore workforce experiences of the rapid implementation of a SARS-CoV-2 asymptomatic testing service (ATS) in a higher education setting during the COVID-19 pandemic. The setting was a multi-campus university in the UK, which hosted a testing service for employees and students over two years. Qualitative semi-structured videoconference interviews were conducted. We contacted 58 participants and 25 were interviewed (43% response rate). Data were analysed thematically. The analysis produced four overarching themes: (1) feelings relating to their involvement in the service, (2) perceptions of teamwork, (3) perceptions of ATS leadership, (4) valuing the opportunity for career development. Agile and inclusive leadership style created psychological safety and team cohesion, which facilitated participants in the implementation of a rapid mitigation service, at pace and scale. Specific features of the ATS (shared vision, collaboration, networking, skills acquisition) instilled self-confidence, value and belonging, meaningfully impacting on professional development and career opportunities. This is the first qualitative study to explore the experiences of university employees engaged in the rapid deployment of a service as part of a pandemic outbreak and mitigation strategy within a higher education setting. Despite pressures and challenges of the task, professional growth and advancement were universal. This has implications for workforce engagement and creating workplaces across the sector that are well-prepared to respond to future pandemics and other disruptive events.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Pandemias , Pesquisa Qualitativa , Recursos Humanos
10.
Artigo em Inglês | MEDLINE | ID: mdl-36293719

RESUMO

Asymptomatic testing for SARS-CoV-2 RNA has been used to prevent and manage COVID-19 outbreaks in university settings, but few studies have explored their implementation. The aim of the study was to evaluate how an accredited asymptomatic SARS-CoV-2 testing service (ATS) was implemented at the University of Nottingham, a multi-campus university in England, to identify barriers and enablers of implementation and to draw out lessons for implementing pandemic response initiatives in higher education settings. A qualitative interview study was conducted with 25 ATS personnel between May and July 2022. Interviews were conducted online, audio-recorded, and transcribed. Participants were asked about their experience of the ATS, barriers and enablers of implementation. Transcripts were thematically analysed. There were four overarching themes: (1) social responsibility and innovation, (2) when, how and why people accessed testing, (3) impact of the ATS on the spread of COVID-19, and (4) lessons learned for the future. In establishing the service, the institution was seen to be valuing its community and socially responsible. The service was viewed to be broadly successful as a COVID-19 mitigation approach. Challenges to service implementation were the rapidly changing pandemic situation and government advice, delays in service accreditation and rollout to staff, ambivalence towards testing and isolating in the target population, and an inability to provide follow-up support for positive cases within the service. Facilitators included service visibility, reduction in organisational bureaucracy and red tape, inclusive leadership, collaborative working with regular feedback on service status, flexibility in service delivery approaches and simplicity of saliva testing. The ATS instilled a perception of early 'return to normality' and impacted positively on staff feelings of safety and wellbeing, with wider benefits for healthcare services and local communities. In conclusion, we identified common themes that have facilitated or hindered the implementation of a SARS-CoV-2 testing service at a university in England. Lessons learned from ATS implementation will inform future pandemic response interventions in higher education settings.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Teste para COVID-19 , RNA Viral , Inglaterra/epidemiologia
11.
Sci Rep ; 12(1): 11553, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798820

RESUMO

Polymerase chain reaction (PCR) has proven to be the gold-standard for SARS-CoV-2 detection in clinical settings. The most common approaches rely on nasopharyngeal specimens obtained from swabs, followed by RNA extraction, reverse transcription and quantitative PCR. Although swab-based PCR is sensitive, swabbing is invasive and unpleasant to administer, reducing patient compliance for regular testing and resulting in an increased risk of improper sampling. To overcome these obstacles, we developed a non-invasive one-step RT-qPCR assay performed directly on saliva specimens. The University of Nottingham Asymptomatic Testing Service protocol simplifies sample collection and bypasses the need for RNA extraction, or additives, thus helping to encourage more regular testing and reducing processing time and costs. We have evaluated the assay against the performance criteria specified by the UK regulatory bodies and attained accreditation (BS EN ISO/IEC 17,025:2017) for SARS-CoV-2 diagnostic testing by the United Kingdom Accreditation Service. We observed a sensitivity of 1 viral copy per microlitre of saliva, and demonstrated a concordance of > 99.4% between our results and those of other accredited testing facilities. We concluded that saliva is a stable medium that allows for a highly precise, repeatable, and robust testing method.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Humanos , Nasofaringe , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva/química , Sensibilidade e Especificidade , Manejo de Espécimes/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-35805287

RESUMO

The global COVID-19 pandemic has impacted on the mental well-being of university students, but little attention has been given to international students, who may have a unique experience and perspective. The aim of this study was to explore the views of international students and university staff towards COVID-19 restrictions, self-isolation, their well-being, and support needs, through eight online focus groups with international students (n = 29) and semi-structured interviews with university staff (n = 17) at a higher education institution in England. Data were analysed using an inductive thematic approach, revealing three key themes and six subthemes: (1) practical, academic, and psychological challenges faced during self-isolation and the COVID-19 pandemic; (2) coping strategies to self-isolation and life during the pandemic; and (3) views on further support needed for international students. International students faced practical, academic, and psychological challenges during the COVID-19 pandemic, particularly relating to the rapid transition to online learning and the impact of social restrictions on integration with peers and well-being. Online social connections with peers, family, or new acquaintances reduced feelings of isolation and encouraged involvement in university life. Despite raising mental health concerns, most international students did not access mental health support services. Staff related this to perceived stigma around mental health in certain cultural groups. In conclusion, international students experienced specific practical and emotional challenges during the pandemic, and are at risk of mental ill-health, but may not actively seek out support from university services. Proactive and personalised approaches to student support will be important for positive student experiences and the retention of students who are studying abroad in the UK higher education system.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Pandemias , Pesquisa Qualitativa , Estudantes , Universidades
13.
Methods Protoc ; 5(2)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35314662

RESUMO

Since mid-2020 there have been complexities and difficulties in the standardisation and administration of nasopharyngeal swabs. Coupled with the variable and/or poor accuracy of lateral flow devices, this has led to increased societal 'testing fatigue' and reduced confidence in test results. Consequently, asymptomatic individuals have developed reluctance towards repeat testing, which remains the best way to monitor COVID-19 cases in the wider population. On the other hand, saliva-based PCR, a non-invasive, highly sensitive, and accurate test suitable for everyone, is gaining momentum as a straightforward and reliable means of detecting SARS-CoV-2 in symptomatic and asymptomatic individuals. Here, we provide an itemised list of the equipment and reagents involved in the process of sample submission, inactivation and analysis, as well as a detailed description of how each of these steps is performed.

14.
Front Physiol ; 13: 806366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197863

RESUMO

Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.

15.
Methods Mol Biol ; 2441: 339-348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099750

RESUMO

Various protocols have been developed to generate endothelial cells for disease modeling, angiogenesis, vascular regeneration, and drug screening. These protocols often require cell sorting, as most differentiation strategies result in a heterogenous population of endothelial cells (ECs). For any given model system, one important consideration is choosing the appropriate EC subtype, as different EC populations have unique molecular signatures.Herein, we describe a protocol for cardiac EC differentiation and a protocol for endothelial cell characterization. This protocol is aimed at investigating differentiation efficiency by measuring endothelial lineage markers, CD31, VE-Cadherin, and VEGFR2 by flow cytometry. Collectively, these protocols comprise the tools required to generate cardiac ECs efficiently and reproducibly from different hPSC lines without the need for cell sorting. Our protocol adds to the panel of hPSCs for cardiac EC differentiation and addresses reproducibility concerns of hPSC-based experiments. The approaches described are also applicable for complex model generation where multiple cardiovascular cell types are involved and may assist in optimizing differentiations for different cell lineages, including cardiomyocytes, cardiac endothelial cells, and cardiac fibroblasts.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Diferenciação Celular , Linhagem da Célula , Células Endoteliais/metabolismo , Humanos , Miócitos Cardíacos , Reprodutibilidade dos Testes
16.
J Infect Dis ; 225(12): 2137-2141, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35022740

RESUMO

BACKGROUND: Psychological factors can influence susceptibility to viral infections. We examined whether such influences are evident in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Participants (n = 102) completed measures of anxiety, depression, positive mood, and loneliness and provided a blood sample for the measurement of antibodies to the SARS-CoV-2 spike and nucleocapsid proteins. RESULTS: SARS-CoV-2 was significantly negatively associated with anxiety and depression. The model remained significant after adjustment for age and gender, although anxiety and depression were no longer significant independent predictors. CONCLUSIONS: These findings offer early support for the hypothesis that psychological factors may influence susceptibility to SARS-CoV-2 infection.


Assuntos
COVID-19 , Anticorpos Antivirais , Ansiedade , Depressão , Humanos , Proteínas do Nucleocapsídeo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
17.
Stem Cells Dev ; 30(24): 1215-1227, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34806414

RESUMO

Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall thickness that can lead to devastating conditions such as heart failure and sudden cardiac death. Despite extensive study, the mechanisms mediating many of the associated clinical manifestations remain unknown and human models are required. To address this, human-induced pluripotent stem cell (hiPSC) lines were generated from patients with a HCM-associated mutation (c.ACTC1G301A) and isogenic controls created by correcting the mutation using CRISPR/Cas9 gene editing technology. Cardiomyocytes (hiPSC-CMs) were differentiated from these hiPSCs and analyzed at baseline, and at increased contractile workload (2 Hz electrical stimulation). Released extracellular vesicles (EVs) were isolated and characterized after a 24-h culture period and transcriptomic analysis performed on both hiPSC-CMs and released EVs. Transcriptomic analysis of cellular mRNA showed the HCM mutation caused differential splicing within known HCM pathways, and disrupted metabolic pathways. Analysis at increasing contraction frequency showed further disruption of metabolic gene expression, with an additive effect in the HCM background. Intriguingly, we observed differences in snoRNA cargo within HCM released EVs that specifically altered when HCM hiPSC-CMs were subjected to increased workload. These snoRNAs were predicted to have roles in post-translational modifications and alternative splicing, processes differentially regulated in HCM. As such, the snoRNAs identified in this study may unveil mechanistic insight into unexplained HCM phenotypes and offer potential future use as HCM biomarkers or as targets in future RNA-targeting therapies.


Assuntos
Cardiomiopatia Hipertrófica , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Miócitos Cardíacos , RNA Nucleolar Pequeno/metabolismo , RNA Nucleolar Pequeno/farmacologia , Transcriptoma/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-34682418

RESUMO

This qualitative study explored the impact of COVID-19 self-isolation and social restriction measures on university students, through the perspectives of both students and the staff supporting them. The study comprised 11 focus groups (students) and 26 individual interviews (staff) at a higher education institution in England during a period of national lockdown (January-March 2021). Participants were university students (n = 52) with self-isolation experiences and university staff (n = 26) with student-facing support roles. Focus group and interview data were combined and analysed using an inductive thematic approach. Four themes emerged: 'Adaptation during the pandemic', 'Practical, environmental, and emotional challenges of self-isolating', 'Social factors and their impact on COVID-19 testing and self-isolation adherence', and 'Supporting self-isolation'. Students and staff struggled with the imposed restrictions and shift to online education. Students found it difficult to adapt to new expectations for university life and reported missing out on professional and social experiences. Students and staff noted concerns about the impact of online teaching on educational outcomes. Students endorsed varied emotional responses to self-isolation; some felt unaffected whilst others experienced lowered mood and loneliness. Students were motivated by pro-social attitudes; campaigns targeting these factors may encourage continued engagement in protective behaviours. Staff struggled to manage their increased workloads delivering support for self-isolating students. Universities must consider the support needs of students during self-isolation and prepare for the long-term impacts of the pandemic on student wellbeing and educational attainment. Greater support should be provided for staff during transitional periods, with ongoing monitoring of workforce stress levels warranted.


Assuntos
COVID-19 , Pandemias , Teste para COVID-19 , Controle de Doenças Transmissíveis , Humanos , SARS-CoV-2 , Estudantes
19.
EMBO Mol Med ; 13(6): e13074, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998164

RESUMO

The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.


Assuntos
Transplante de Coração , Miócitos Cardíacos , Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático , Humanos , Mitocôndrias , Mutação , Miócitos Cardíacos/metabolismo , Proteômica , Doadores de Tecidos
20.
Stem Cell Reports ; 16(9): 2169-2181, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34019816

RESUMO

Duchenne muscular dystrophy (DMD) is a rare X-linked recessive disease that is associated with severe progressive muscle degeneration culminating in death due to cardiorespiratory failure. We previously observed an unexpected proliferation-independent telomere shortening in cardiomyocytes of a DMD mouse model. Here, we provide mechanistic insights using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using traction force microscopy, we show that DMD hiPSC-CMs exhibit deficits in force generation on fibrotic-like bioengineered hydrogels, aberrant calcium handling, and increased reactive oxygen species levels. Furthermore, we observed a progressive post-mitotic telomere shortening in DMD hiPSC-CMs coincident with downregulation of shelterin complex, telomere capping proteins, and activation of the p53 DNA damage response. This telomere shortening is blocked by blebbistatin, which inhibits contraction in DMD cardiomyocytes. Our studies underscore the role of fibrotic stiffening in the etiology of DMD cardiomyopathy. In addition, our data indicate that telomere shortening is progressive, contraction dependent, and mechanosensitive, and suggest points of therapeutic intervention.


Assuntos
Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Encurtamento do Telômero/genética , Biomarcadores , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Diferenciação Celular , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fibrose , Imunofluorescência , Expressão Gênica , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenômenos Mecânicos , Distrofias Musculares/patologia , Distrofia Muscular de Duchenne/etiologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Contração Miocárdica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...